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Generalized Langevin equation with fractional derivative and long-time correlation function
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We investigate the motion of a particle governed by a generalized Langevin equation with fractional deriva-
tive, nonlocal dissipative force, and long-time correlation function. We derive general expressions for the
variances with a linear external force. We also analyze their asymptotic behaviors for the power-law correlation

function without external force.
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I. INTRODUCTION

One of the fundamental mechanisms for transport of ma-
terials in physical systems is related to diffusion. A well-
known example of a diffusion process is Brownian motion.
Diffusion processes are classified according to their mean-
square displacements: in normal diffusion the mean-square
displacement grows linearly with time and in other situations
the processes are said to exhibit anomalous diffusion. Nowa-
days, there are several approaches to describe anomalous dif-
fusion processes, and they can be applied to many situations
of natural systems [ 1-3]. One of the most interesting features
incorporated into these approaches is that related to the
memory effect. In particular, the memory effect incorporated
into the Langevin approach can be associated with the retar-
dation of friction and fractal media [4-9]. Moreover, it has
been suggested to substitute the ordinary derivative by the
fractional derivative when separation of the microscopic and
macroscopic time scales does not exist [4]. Let us consider
the following generalized Langevin equation:

t
ODf‘v+f diyy(t—t)v+Ux)=F() for0<a<l,
0

(1)

where v is the velocity, ¥(7) is the dissipative memory kernel,
U(x) is an external force, F(¢) is a Gaussian random force
with mean zero and correlation function given by

(F(t)F(1)) = C(|t; = 1)), 2)
oDfv is the Caputo fractional derivative [10] defined by
I f’dt dvldt, )
T = el =)

and I'[z] is the Gamma function. We note that the fractional
Langevin equation (1) with the use of the Riemann-Liouville
fractional derivative and white noise has been investigated in
[11]. Further, the ordinary Langevin equation with correlated
noise has been investigated in [12] and it can also produce
anomalous diffusion processes.

It is known that for ordinary derivatives (@=1) the inter-
nal noise is related to the dissipative memory kernel. Two
types of correlation function are usually employed to study
the above system: power-law and exponential correlations. In
particular, the anomalous diffusion processes can be gener-
ated by an internal power-law correlation function [5,6].
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In this work we investigate the generalized Langevin
equation given by (1) which includes the fractional deriva-
tive and nonlocal dissipative force. We obtain expressions for
the variances with a linear external force. We show that these
expressions for the variances can be very general due to the
fact that they are independent of the fractional parameter a.
We also analyze their asymptotic behaviors for the power-
law correlation function.

II. GENERAL EXPRESSIONS FOR THE VARIANCES
WITH U(x)= wx

Before analyzing the details of the above system for some
specific correlation function and dissipative memory kernel,
we can obtain formal expressions for the first moments and
general expressions for the variances. Equation (1) can be
solved by using the Laplace transform, with the initial con-
ditions xy=x(0) and vy=v(0). The displacement x(r) is given
by

1

x(1) =(x) + J dn,G(t—1)F(t)), “4)

0

where

B 5 vy "G(t-1)
<X>—xo(1—wa1)+r[l_a]f0dt1 r (5

and I(¢)=[{dt;G(t—1,). The kernel G(z) is the Laplace inver-
sion of

— 1
G=—— """, 6
sy sy + o (©)

where 7 is the Laplace transform of the damping kernel (z).
From Eq. (4) one can obtain the velocity v(z) which is
given by

t

v(@)=(v) + f dng(t—1,)F(t) ()

0
with G(0)=0, where
(v) = v9oD{'G — xgw  G(1) (8)

and g(t)=dG/dt. We note that for =1 (ordinary derivative)
we recover the results obtained in [7].

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.73.061104

KWOK SAU FA

From the solutions (4) and (7) and taking into account the
symmetry of the correlation function, one can obtain the ex-
plicit expressions of the variances,

t

O = (%) = (x)* = ZJ df1G(t1)J 1 dt,G(1,)C(t, - 1),
0 0

)

ldo,,
Ow=175
2 dt

=G(t)f dr,G(t,)C(t—-1y), (10)
0

and

0y = (V%) = (v)* = zf df1g(f1)f 1 dtg(t,)C(t) = 1).
0 0

(11)

We note that the solutions (4), (7), and (9)—(11) provide
very general expressions due to the fact that they do not
depend explicitly on the parameter «. In fact, they maintain
the same expressions as the solutions of the ordinary deriva-
tive [7,9]. The order of the fractional derivative « appears in
the kernel G(z), (x), and (v).

In the case of C(¢) proportional to the dissipative memory
kernel C(r)=c(t) the expressions (9)—(11) can be simplified
to

' 1
Oy = zf dth(tl)f dt,G(1,)C(t) — 1)
0 0

= c<2l(t) - 2ftdt1G(t1)0Df:G(l1) - wﬁlz(t)>, (12)

0

! da—xx a
0= 5 =GO = DIG() - w (0], (13)

and
' 1
ovvzzf dtlg(tl)f dtrg(t,)C(t; — 1)
0 0
t
=ZCJ dng(t)[- ODE:')tlg(tl)_wiG(tl)]
0
t
=C(—2f dflg(fl)ony*)zlg(fl)—wiGz(f)>, (14)
0

where (D()g(t) is the Riemann-Liouville fractional deriva-

tive defined by
dft g(t)
dt . (15)
0 He-1)"

o 1
oD{8(1) = Ti-wd

We note that for a=1 we recover the results obtained in [7,9]
which are given by

o =c[21(t) - GX(1) — ()], (16)
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0, =cGO[1-g(t) - I(1)], (17)
and

O = C[l - gz(t) - szz(t)]- (1 8)

III. LONG-TIME CORRELATION FUNCTION AND
ASYMPTOTIC BEHAVIORS WITH U(x)=0

In order to investigate some detail of the above system
one considers two well-known correlation functions: the ex-
ponential and power-law correlations. Moreover, we set
U(x)=0.

We first consider the case of frictional memory kernel
given by y(f)=7y,e™ and ordinary derivative (a=1). The
Laplace transform of (¢) is ¥(s)=1y,/(s+\). By using (6),
we obtain

2

A
Y>—, (19)

A
G()=—[1 =A™ sin(\t + ¢)],
Yo 4

4 A A2
Gh=—|1- -“’2<1 —t> , =—, 20
(1) )\[ e *2 W=7 (20)

Glr) = A( 1— %e—(x/z-xz)t N A, - le_(x/2+>\2)t)’
Y0
A2
Yo < Z (21)
where
-2 A2
A1=ﬂ’ Ay = 70’ A= Yo—
AN 2NN\, 4
)\2
)\2 = V Z - %> (22)
and
AN
b= arctan(z—l). (23)
N2 =y,

The solution (19) has been obtained in [6], but the authors
have not considered the other two cases. We see that the
behavior of G(#) changes with the damping parameter. In the
case of internal noise, the correlation function is related to
the dissipative memory kernel given by C(t)=(D/27.)e™"™
and y(r)=C(t)/kgT [6], where 7, is the correlation time, kg is
the Boltzmann constant, and 7 is the absolute temperature of
the environment. Then, N=1/7, and y,=D/(27.ksT). For
this case, the change of behavior of the kernel G(z) can be
associated with the noise intensity D. For D> kgT/27,, G(t)
oscillates. For D=kzT/27., G(t) does not oscillate; however,
it contains a term of type e *z. For D<<kzT/27., G(t) con-
tains a combination of exponential terms. These behaviors
are also obtained for the variances as shown below.

From the solutions (19)—(21) one can obtain the variances
o,, and o,, which are given by
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4k,

Opx = D2

{sin ¢+ 2N\ 7. cos ¢

— e 7[3 sin(\ 1+ @) + 2\ 7. cos(\ 1 + @)}
(2ksT)?  4(kgT)?
+ 1= 2
D D

[1+ A2 sin® (A1 + )],

D > kzT/27,, (24)

O =

(2kBT)2( 2D7 kBT>
t—4r.+ ———-——
D ksT D

8(kyT)>7.e7"% t DT,
+—————| 1+ l+—]|{1-—
D 27, kT

8(kBT)3€_t/ZTC DTC t e—t/ZTC
1= —11- ,
D kyT ) 27, 2

D=kyT/27., (25)

1+A,
N2-N\,

2
o = 2(kgT) (2t+ (e-V2M)_ 1)
XX D

1-4,
Lt N
M2+,

3
(e-M2R)r _ 1)) _ 4(kgT) (1 _1+4A;

D? 2
1-A,

2
e~ (M2-N)1 _ e—O\/ZH\z)f) , D<kgTl2rt,,

(26)

(2kBT)2A%e_

1
1T, .
¢ sin(A\ 7+
D? (27. in(hi7+ )

(&

O, =kBT|:1 -

2
— N cos(\ 1+ d))) }, D > kzT/27,, (27)

! : —t/
Cu=kgT| 1=\ 14— | e\, D=kyT/27,, (28)
Te

and

Ty =kB -

(2kgT)*| 1+ A, ﬁ_)\ ~(\2-A
2 | 2 \2 )¢

1-A,
2

A’ 2
(5 + )\2)6_()‘/2”‘2)’} , D <kgTl2r..

(29)

It is easy to see that the asymptotic behaviors of these

mean-square displacements are similar and they present nor-
. . . (2kpT)?
mal diffusion, given by o, ~ %t, whereas o,, ~ kgT. The

former result shows that the internal exponential correlation
function does not generate anomalous diffusion processes, in
contrast to the power-law correlation function [5-7].
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Next, we consider a long-time correlation function given
by C(t)=Cy? (0<6<1) and the frictional memory kernel
as Y() =yt (0<A<1), for 0<a<1. Then, the Laplace
transform of () is y=9,I'(1-\)s*!. From Eq. (6) we ob-
tain

G(1) = 1°Eqon 1eal = (1= N1 (30)
and

gt)=t""Ep, qon o= (1= N7, (31)

where E, 4(z)=2,_z"/T'(B+an) is the generalized Mittag-
Leffler function. Moreover, one can obtain explicit solutions
for

f | dt,G(1,)C(t; — 1)

0
=Cl (1= O E grnvad— HI (1= N1
(32)

and

n
f dtyg(t,)C(t; — 1)
0
=Cyl'(1- 0)tl_0E1+a—)\,l+a—n9[_ nra- 7\)f}+a_)\]~
(33)

The explicit solutions for {x) and (v) can be obtained from
the solution (30), and they are given by

(X) =x + VotE 4 qp ol M (1 = M)+ (34)
and
(V) = VoE 1rar[— MI(1 = N, (35)

We note that these first moments can give the same results
obtained from the fractional Fokker-Planck equation by iden-
tifying the parameter of the fractional order of the fractional
Fokker-Planck equation with 1+a—N\ (for A # @) [13]. In the
case of A=q, we obtain the same results of the normal
Brownian motion.

The asymptotic behaviors of the above quantities can be
obtained by using the long-time limit of the generalized
Mittag-Leffler function [14]

1
E,p5(z) ~ - Zr(ﬂ—_a), (36)
and we obtain
N vot}\—a
= T G+ h-a) @7
and
A—a-1
®) oo (38)

T LN -a)’

where we have considered x,=0. Equation (37) shows a net
drift in a direction determined by the initial velocity v,. For
N <a, Eq. (37) exhibits a slow power-law decay. We see that
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there is a competition between the dissipative term and iner-
tial term. In the normal Brownian motion (v) exhibits an
exponential decay faster than the power-law decay exhibited
by Eq. (38) for A#a (0<A<1 and 0<a<1). But, for
A=a, (v) exhibits an exponential decay which has the same
result of the normal Brownian motion.

Instead of determining the complete solutions of the vari-
ances by using (30)—(33), we are interested in determining
the long-time behaviors of the mean-square displacement
which can be obtained from Eq. (36). In this case, o, is
given by

o, ~ const, 2\ <6, (39)

o~ In(r), 2N=40, (40)
and

o, ~10 o> 0. (41)

From Eq. (41) we have normal diffusion for 2\—6=1, sub-
diffusion for 2\ —6<1, and superdiffsuion for 2A—6>1. It
is interesting to note that the long-time behavior of the mean-
square displacement does not depend on the parameter « of
the inertial term. This means that the inertial term has no
significant contribution to the long-time limit of the mean-
square displacement as in the usual case [2].
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IV. CONCLUSION

In this work we have investigated the motion of a particle
governed by the generalized Langevin equation with frac-
tional derivative (1) under the influence of a long-time cor-
relation function and a linear external force U(x):wix.
In particular, the generalized Langevin equation with ordi-
nary derivative and dissipative memory kernel has been stud-
ied and applied to several physical systems [3,5-9], whereas
the generalized Langevin equation with fractional derivative
has been studied and applied to financial systems [4].
Equation (1) generalizes the usual Langevin equation by
using both the nonlocal dissipative force and fractional
derivative which modifies the classical Newtonian force. We
have obtained unifying expressions for the displacement,
velocity, and variances due to the fact that they are
independent of the fractional parameter «. The processes
have been investigated by using the exponential and power-
law correlation functions. The exponential correlation func-
tion has been applied to a=1 and it does not generate
anomalous diffusion processes. However, the anomalous dif-
fusion processes can be generated by the power-law correla-
tion function, and they are confirmed in [7] and by the
asymptotic solutions (40) and (41) of fractional derivative
approach.
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